\qquad

Target	1	2 (all of 1 plus)	3 (all of 2 plus)	4 (all of 3 plus)
LE 5.7 Preparedness	Does not complete formative or summative in an effortful and timely manner, is not engaged, does not arrive on time with class materials ready to learn, does not communicate when issues arise	Completes formative or summative in an effortful or timely manner, is sometimes engaged, sometimes arrives on time with class materials ready to learn, sometimes communicates when issues arise	Completes formative or summative in an effortful and timely manner, remains engaged, arrives on time with materials ready to learn, communicates when issues arise	Completes formative or summative in an effortful and timely manner, remains engaged, arrives on time with materials ready to learn, communicates when issues arise, and is reflective on strengths and challenges within your preparedness skill
LE 5.6 Precision	Recognizes the importance of products that are planned, edited, and completed with care	Attempts products that are planned, edited, and completed with care	Creates products that are planned, edited, and completed with minimal errors	Creates products that are planned, edited, and completed free from errors or need for revision
Phusikos 1	I can identify an atom	I can identify the parts of an atom in a diagram	I can draw or build a representation of an atom with atomic numbers 1-10.	I can build a representation of an atom with atomic numbers 11-18.
MP2 Atoms, Bonding	I can diagram the shell structure of an atom and demonstrate an understanding of valence electrons	(all of 1 plus) I can use the periodic table to predict properties of atoms of elements based on patterns of electrons in atoms	(all of 2 plus) I can predict and diagram bonding between atoms	(all of 3 plus) Nailed it!

Draw an Atom (Orbital Models)

Hydrogen

Atomic Number \qquad
Number of Protons \qquad
Mass \# \qquad
Mass \# - number of Protons = Number of Neutrons \qquad
Number of Electrons \qquad
\# Electrons in $1^{\text {st }}$ shell \qquad \# Electrons in 2 ${ }^{\text {nd }}$ shell \qquad
\# Electrons in 3 ${ }^{\text {rd }}$ shell \qquad

Beryllium

Atomic Number \qquad
Number of Protons \qquad
Mass \# \qquad
Mass \# - number of Protons =
Number of Neutrons \qquad
Number of Electrons \qquad
\# Electrons in $1^{\text {st }}$ shell \qquad
\# Electrons in $2^{\text {nd }}$ shell \qquad
\# Electrons in $3^{\text {rd }}$ shell \qquad

Carbon

Atomic Number \qquad
Number of Protons \qquad
Mass \# \qquad
Mass \# - number of Protons =
Number of Neutrons \qquad
Number of Electrons \qquad
\# Electrons in $1^{\text {st }}$ shell \qquad
\# Electrons in $2^{\text {nd }}$ shell \qquad
\# Electrons in $3^{\text {rd }}$ shell \qquad

Oxygen

Atomic Number \qquad
Number of Protons \qquad
Mass \# \qquad
Mass \# - number of Protons =
Number of Neutrons \qquad
Number of Electrons \qquad
\# Electrons in $1^{\text {st }}$ shell \qquad
\# Electrons in $2^{\text {nd }}$ shell \qquad
\# Electrons in $3^{\text {rd }}$ shell \qquad

Sodium

Atomic Number \qquad
Number of Protons \qquad
Mass \# \qquad
Mass \# - number of Protons =
Number of Neutrons \qquad
Number of Electrons \qquad
\# Electrons in $1^{\text {st }}$ shell \qquad
\# Electrons in $2^{\text {nd }}$ shell \qquad
\# Electrons in $3^{\text {rd }}$ shell \qquad

Aluminum

Atomic Number \qquad
Number of Protons \qquad
Mass \# \qquad
Mass \# - number of Protons =
Number of Neutrons \qquad
Number of Electrons \qquad
\# Electrons in $1^{\text {st }}$ shell \qquad
\# Electrons in $2^{\text {nd }}$ shell \qquad
\# Electrons in 3rd ${ }^{\text {rd }}$ shell \qquad

Chlorine

Atomic Number \qquad
Number of Protons \qquad
Mass \# \qquad
Mass \# - number of Protons =
Number of Neutrons \qquad
Number of Electrons \qquad
\# Electrons in $1^{\text {st }}$ shell \qquad
\# Electrons in $2^{\text {nd }}$ shell \qquad
\# Electrons in $3^{\text {rd }}$ shell \qquad

